ies Mot

BY

Er. Lalit Sharma **Arun Garg** Arun Garg

Ex. Lecturer Govt. Engg. College Bathinda Gold Medalist College Bathinda Gold Medalist Physics Faculty Ranker's Point, Bathinda **Physics Faculty Ranker's Point, Bathinda**

B.Tech (Electrical) and the state of the state of the state of the M.Sc. Physics and M.Sc. Physics and M.Sc. Physics

Class:10+2 Unit: II Topic: Current Electricity

SYLLABUS: UNIT-II

Electric current, flow of electric charges in a metallic conductor, drift velocity and mobility and their relation with electric current; Ohm's law, electrical resistance, V-I characteristics (linear and non-linear), electrical energy and power, electrical resistivity and conductivity, Carbon resistors, colour code for carbon resistors; series and parallel combinations of resistors; temperature dependence of resistance.

Internal resistance of a cell, potential difference and emf of a cell, combination of cells in series and in parallel. Kirchhoff's laws and simple applications. Wheatstone bridge, metre bridge.

Potentiometer-principle and applications to measure potential difference, and for comparing emf of two cells measurement of internal resistance of a cell.

©

All rights reserved. No part of this publication may be reproduced, stored in a retrieval system, or transmitted in any form or by any means, electronic, mechanical, photocopying, recording, or otherwise without the prior written permission of the publishers.

Q1.a) What is Electric Current? Unit? Dimensions?

b) $4e^+$ crosses a given cross-section to right and $2e^-$ charge crosses to left in one second. Find current.

c) $q(t) = 2t^2 + 3t + 4$ Find current at any instant of time t. Find current at time $t = 5$ sec.

Ans.a) **Current:-**

Charge flowing per unit time.

$$
I = \frac{\Delta \theta}{\Delta t}
$$

b) $| \qquad = |I_+| + |I_{-ve}|$

 $= 6 \times 1.6 \times \frac{10^{-19}C}{1sec}$

 $=\frac{4e+2e}{4e+2e}$

Units \rightarrow ampere (A) Dimension \Rightarrow $[M^0L^0T^0A']$

 $I = 9.6 \times 10^{-19} A$

 $\frac{e^+2e}{1sec} = \frac{6e}{1se}$

1sec

c)
$$
q(t) = 2t^2 + 3t + 4
$$

$$
\therefore \qquad | \qquad = \frac{dq}{dt}
$$

$$
\Rightarrow \qquad = 2(2t) + 3(1)
$$

$$
1 = 4t + 3
$$

$$
1 \text{ at } t = 5 \text{ sec}
$$

$$
= 4(5) + 3
$$

$$
= 23A
$$

Q2. Find relation between drift velocity and electric field. OR Prove $V_d = \mu$.E Mobility $\binom{V_d \to Dritt \; Velocity}{E \to Electric \; Field}$

Ans. Case I:- When no Electric Field is applied i.e. $E = 0$.

to number of electron moving to left.

 $E = 0$

When no Electric Field is applied. Electrons

move randomly. Number of e^- moving to right is equal

Case II:- When $E \neq 0$

3

5
\nQ3. a) Prove I = n.A.e.
$$
V_d
$$

\nb) Prove Ohm's Law i.e. $V = I.R$
\nOR
\n $\vec{J} = \sigma \cdot \vec{E}$
\nAns.a) $I = \frac{charge \, flowing}{sec}$
\n $= (e) \left(\frac{no.of \, electrons}{sec}\right)$
\n $= (e) (n.A.V_d)$
\n $I = n.A.e.V_d$
\nb) $I = n.A.e.V_d$

 $Volume = A. V_d$ $n \rightarrow$ no. of e volumes

$$
1 - \dots \dots \dots
$$

 $= n.A.e$ $\left(\frac{e.\tau}{m}\right)$

$$
\frac{I}{A} = \frac{n.e^2.\tau}{m}.E
$$

 $\frac{m}{m}$. E

Current Density,

$$
J = \left(\frac{n.e^{2} \cdot \tau}{m}\right).E
$$
\n
$$
J = \sigma.E
$$
\n
$$
Conductivity
$$

J → Current Density $E \rightarrow$ Electric Field

- 7
	- Q4. a) Give approximate value of resistivity for conductors, semiconductors, insulators. Also discuss temperature coefficient of resistivity values.
		- b) What is "Colour code for carbon resistors"? Give Example.

Temperature Coefficient α at <u>temperature 0⁰C</u>

Conductors

- 1. 0.0041
- 2. 0.0068

Semi conductors

- -0.05
- -0.07

Conductors have low resistivity, semi conductors have medium resistivity and insulators have high resistivity. Temperature co-efficient for metals are +ve. Temperature co-efficient for semiconductors is –ve.

b) Coloured bands on carbon resistors are used as codes to find value of resistance.

Yellow $\label{eq:1} Brown$

 \emph{Gold} (5%)

- 9
	- Q5. a) How resistivity of metals changes with change in temperature?
		- b) How resistivity of semiconductors changes with change in temperature?
		- c) How resistance of a wire changes with temperature.

Ans.a) Metals:-

As proved in Ohm's Law (in Q.No.3)

$$
J = \left(\frac{n.e^{2} \cdot \tau}{m}\right).E
$$
\n
$$
J = \sigma.E
$$
\n
$$
J = \sigma.E
$$
\n
$$
J = \sigma
$$
\n<math display="</math>

Conductivity, $\sigma = \frac{n.e^2.\tau}{m}$ \boldsymbol{m}

 $n \rightarrow$ no. of electrons in metals remain same with temperature.

 $e \rightarrow$ charge on electrons remain same.

 $m \rightarrow$ mass of electrons remain same.

 $\tau \rightarrow$ relaxation time decreases with increase in temperature.

(Reason \rightarrow As temperature increases, speed increase.

So, time between two collisions decreases.)

$$
\sigma = \left(\frac{n.e^2}{m}\right). \tau
$$

Decreases with increase in temperature

So, Conductivity decreases and resistivity increases.

b) Semiconductors:-

$$
\sigma = \frac{n.e^2.\tau}{m}
$$

 $e,m \rightarrow$ remain same

 $n \rightarrow$ increases with increase in temperature.

(Reason \rightarrow same as given in metals.)

increases

 e^2 $\frac{e}{m}$ \cdot $\frac{7}{4}$

So,
$$
\sigma = \overline{n}
$$
.

decreases

Increase in n is more effective than decrease in τ .

So, Conductivity, $\sigma \rightarrow$ increases

Resistivity, $\rho \rightarrow$ decreases

By heating, semiconductors become good better conducting materials.

c)
\n
$$
R_t = R_0 \t (1 + \alpha t)
$$
\nResistance at t^0C
\nResistance at 0^0C of Resistance Temperature

Q6. a) Prove P = VI OR P = $\frac{v^2}{R}$ $\frac{1}{R}$.

b) Why energy (electric) is transmitted at high voltage from one station to another?

Ans.a) Power loss in a conductor:-

Charge particle $+q$ moves from A to B.

$$
V_A \t\t\t> V_B
$$

\n
$$
\Delta V = V_A - V_B
$$

\n
$$
V_0 = V_A - V_B
$$

As particle moves from A to B, change in Potential Energy,

$$
\Delta U = (\Delta V) q
$$

$$
= V_0 . 1 . \Delta t
$$

$$
\Delta U = V_0 . 1 . \Delta t
$$

 I_1^2 . r

 \boldsymbol{r}

 \overline{R}

 \lesssim

Kinetic Energy of charged particle inside a conductor remains constant because drift speed remains constant at all point in a conductor.

So, change in energy,

 $|\Delta U|$ = $|\Delta W|$ i.e. work done

So
$$
\Delta W = V_0 . 1 . \Delta t
$$

$$
\frac{\Delta W}{\Delta t} = V_0 . 1
$$

 $\begin{vmatrix} P & = V_0 & I \end{vmatrix}$ OR $\begin{vmatrix} P & = (I.R) & I=I \end{vmatrix}$

b) Low Voltage Transmission:-

Low Voltage $\rightarrow V_1$ Current

Loss of energy = I_1^2 .r

High Voltage Transmission:-

Transformer is used to increase voltage.

 $2R$

 V_1

 I_1

11

- Q7. a) Prove for resistors in series $R_s = R_1 + R_2$. b) Prove for resistors in parallel $\frac{1}{R_{\text{p}}}$ = $\frac{1}{R_{\text{p}}}$ $\frac{1}{R_1} + \frac{1}{R_2}$ $\frac{1}{R_2}$.
- Ans.a) Resistances in series:- \overline{l} 'v $V_1 \rightarrow$ $\frac{R_1}{\text{WW}}$ $R_{2\stackrel{\cdot }{.}}$

As per Kirchoff's Voltage Law

V =
$$
V_1 + V_2
$$

= I. $R_1 + I. R_2$
V = I.($R_1 + R_2$)

In the above diagram

Comparing theses two equations

$$
\frac{V}{I} = R_1 + R_2 = R_{eqv} \quad \therefore \quad R_{eqv} = R_1 + R_2
$$

b) Resistances in parallel:-

As per Kirchoff's Current Law of Junctions

$$
I = I_1 + I_2
$$

$$
I = \frac{V}{R_1} + \frac{V}{R_2}
$$

$$
\frac{1}{V} = \frac{1}{R_1} + \frac{1}{R_2}
$$

 Comparing the two $\mathbf{1}$ R_{eqv} $=\frac{1}{R}$ $\frac{1}{R_1} + \frac{1}{R_2}$ R_{2}

$$
I = \frac{V}{R_{eqv}}
$$

$$
\frac{I}{V} = \frac{1}{R_{eqv}}
$$

Q9. a) Find E_{eq} and r_{eq} for two cells in series. b) Find E_{eq} and r_{eq} for two cells in parallel.

-
- b) Cells in parallel:-

$$
E_{eq} = I.R + I. r_{eq}
$$

$$
I = \frac{E_{eq.}}{r_{eq} + R}
$$

- Q8. a) Define e.m.f., internal resistance and terminal voltage for a cell.
	- b) Relationship between e.m.f., E and terminal voltage \boldsymbol{V}_t of a cell.
- Ans.a) **E.M.f.:**-

Total voltage developed inside a cell.

Internal resistance, r_{in} :-

Total opposition offered to current between terminals of a cell.

Terminal Voltage, ${V}_t$:-

Voltage across the terminals of a cell, is called terminal voltage.

b) Relationship between E and V_t :-

Discharging

In discharging of a cell, current comes out of +ve terminal of cell.

Terminal voltage is less than e.m.f.

Example:-

$$
E = 10
$$

\n
$$
r_{in} = 10
$$

\n
$$
\leftarrow V_t = 9V \rightarrow
$$

\n
$$
+ WWV
$$

\n
$$
R = 90
$$

\n
$$
E = V_t + I.r_{in}
$$

\n
$$
10 = 9 + (1)(1)
$$

Charging

In charging of a cell, current enters into +ve terminal of cell.

$$
V_t = E + I.r_{in}
$$

$$
V_t = E + I.r_{in}
$$

Terminal voltage is more than e.m.f.

- Q10. Explain:
	- a) Kirchoff's junction rule (Current Law).
	- b) Kirchoff's loop rule (Voltage Law).

Ans.a) Kirchoff's Current Law:-

At any junction, the sum of currents entering the junction is equal to the sum of currents leaving the junction.

Example:-

Find current I using junction rule at A

$$
I_1 = \frac{10V}{2\Omega} = 5A
$$

\n
$$
I_2 = \frac{10V}{5\Omega} = 2A
$$

\nAt *A*
\nCurrent entering = Current leaving

$$
I = I_1 + I_2
$$

= 5A + 2A

$$
I = 7A
$$

b) Kirchoff's Loop rule:-

The algebraic sum of changes in potential around any closed loop involving resistors and cells in the loop is zero, (where voltage rise is taken as positive and voltage drop is taken as negative)

Example:-

Find current I in the circuit using Kirchoff's current and voltage law.

Solutions:-

Step 1:- Let the current flowing is x in BC as shown.

Use Kirchoff's junction rule at B

$$
I = x + y \implies y = I - x
$$

Step 2:- Kirchoff's loop rule ABCDEA $(-3$ I) + $(-2x)$ + $(+4)$ = 0 $4 = 2x + 31$ \cdots (1)

Step 3:- Kirchoff's loop rule BGHCB

$$
-[2 (I - x)] + 2(x) = 0
$$

$$
2(I-x)=2x
$$

 $\mathbf{x} = \frac{l}{2}$ $I = 1$ amp $x = \frac{1}{2}$ $\frac{1}{2}$ amp, y = $\frac{1}{2}$ $\frac{1}{2}$ amp

Voltage rise taken as +ve and voltage fall taken as -ve

Q11. a) What is Wheatstone Bridge? Use?

b) Derive condition for balanced Wheatstone Bridge? Give example to explain the use of Wheatstone Bridge?

- Ans.a) Wheatstone Bridge is a device/apparatus having four resistances and galvanometer used to find unknown resistance
	- b) Under balance condition B and D are at same potential i.e. $I_g = 0$

$$
I_2 = I_4 \text{ and } I_1 = I_3
$$
 (1)
\n
$$
V_{AB} = V_{AD}
$$

$$
V_{BC} = V_{DC}
$$

\n
$$
I_2 R_2 = I_1 R_1
$$
 (2)
\n
$$
I_4 R_4 = I_3 R_3
$$
 (3)

 $Dividing eq. (2)$ by (3)

$$
\frac{K_2 \cdot R_2}{K_4 \cdot R_4} = \frac{K_1 \cdot R_1}{K_3 \cdot R_3}
$$
\n
$$
\frac{R_2}{K_2} = \frac{R_1}{K_1}
$$

$$
\frac{R_2}{R_4} = \frac{R_1}{R_3}
$$

$$
R_4 = R_2 \left[\begin{array}{cc} R_3 \\ R_1 \end{array}\right]
$$

Example:- Find R_4 for $I_g = 0$

$$
\frac{R_2}{R_4} = \frac{R_1}{R_3}
$$

$$
\frac{10}{R_4} = \frac{5}{2}
$$

$$
R_4 = 4\Omega
$$

Q12. a) What is potentiometer? Use? b) Use of Potentiometer to compare e.m.f's of two cells.

- Ans.a) Potentiometer is a device used to
	- 1. Find e.m.f. of a cell.
	- 2. Compare e.m.f. of two cells.
	- 3. Find internal resistance of a cell.

It measures/compares e.m.f. by "Comparison Method" where signal drawn is zero i.e. "null defection method".

b) Arrangement 1:-

- 1. Voltage per unit length, $K = \frac{V_0}{I}$ $\frac{V_0}{L}$ (say $\frac{0.1 Volt}{metre}$)
- 2. Voltage across $HJ = E (0) r = E$
- 3. Voltage across $AP = \frac{V_0}{I}$ $\frac{v_0}{L}$. *l* (say 4V)
- 4. $(Volt)_{HJ} = (Volt)_{AP}$

$$
E_1 = \left(\frac{V_0}{L}\right) l_1 \qquad \qquad \qquad \text{---} \qquad \qquad \text{(1)}
$$

Arrangement 2:-

Similarly for 2nd figure

$$
E_2 = \left(\frac{V_0}{L}\right) l_2 \qquad \qquad \qquad \qquad \text{---} \qquad \qquad \text{(2)}
$$

Dividing $\overline{1}$ by $\overline{2}$

$$
\frac{E_1}{E_2} = \frac{l_1}{l_2}
$$

Q13. a) Use Potentiometer to find internal resistance of a cell. b) Compare Potentiometer and Voltmeter.

 V_{0}

Arrangement 2:-

Ans.a) **Arrangement 1:-**

1. Voltage across HJ $= R \left(\frac{E}{R+1} \right)$

3. Voltage across AP

 $E_1 = \left(\frac{V_0}{L}\right)$ L

4. $(Volt)_{HI} = (Volt)_{AP}$

- 2. Voltage across $AP = \frac{V_0}{V}$
- 3. $(Volt)_{HJ} = (Volt)_{AP}$

$$
E\left(\frac{R}{R+r}\right) = \left(\frac{V_0}{L}\right)l_2
$$

Dividing (2) by (1)

$$
\left(\frac{R}{R+r}\right) = \left(\frac{l_2}{l_1}\right)
$$
\n
$$
r = R\left(\frac{l_1}{l_2} - 1\right)
$$

b) Comparison of voltmeter and potentiometer

Q14. State, Explain and prove maximum power transfer theorem.

Ans. Maximum power transfer theorem:-

Power transferred to external resistance will be maximum, when external resistance is equal to internal resistance.

Proof:-

 $E \rightarrow e.m.f$ of cell.

 $r \rightarrow$ internal resistance of cell

 $x \rightarrow e$ xternal variable resistance

our objective is to find value of x for which power transferred to x is maximum.

Power across x, P

$$
P = I2 . x
$$

$$
= \left(\frac{E}{r+x}\right)^2 . x
$$

$$
P = E^2 \cdot (r + x)^{-2} \cdot x^1
$$

Difference both sides

$$
\frac{dP}{dx} = \frac{d(E^{2} \cdot (r+x)^{-2} \cdot x^{1})}{dx}
$$
\n
$$
= E^{2} \cdot \left[(r+x)^{-2} \cdot \frac{dx}{dx} + x \cdot \frac{d}{dx} (r+x)^{-2} \right]
$$
\n
$$
0 = E^{2} \cdot \left[(r+x)^{-2} - 2 \cdot x \cdot (r+x)^{-3} \right] \qquad \left[\frac{dP}{dx} = 0 \text{ at } \text{max. power} \right]
$$
\n
$$
\Rightarrow x = r
$$

External resistance is equal to internal resistance for maximum power across x.

